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SUMMARY 

The model of the layer of equilibrium adsorption (LEA) allows reliable solu- 
tions in non-ideal chromatography with arbitrary isotherms. The layer of the equilib- 
rium adsorption, L,, serves as an effective kinetic constant. The exit concentration 
for this layer is equal at any moment of time to the concentration which is in equi- 
librium with the mean amount of adsorption on the whole layer. A simple first order 
differential equation is sufficient for the solution of direct and inverse chromato- 
graphic problems. The basic assumptions of the LEA model are confirmed by ex- 
perimental data. 

INTRODUCTION 

This work deals with one of the significant branches of chromatographic theory 
which concerns the regularities of the mass exchange between the mobile and the 
stationary phases. The main problem is the search for a correlation between the 
distribution functions in the mobile phase, c(Z,t), and in the stationary phase, a(/,?), 
along a chromatographic column of length 1 at any time t on the one hand, and the 
sorption isotherm, the kinetic constants and experimental conditions on the other 
hand. 

It is customary to consider and solve a system of equations for the mass bal- 
ance, sorption kinetics and sorption isotherm. The theory of ideal chromatography 
has been developed lJ, but the theory of non-ideal chromatography has been applied 
only to the case of linear isotherms3+. This can easily be accounted for by the lack 
of a direct solution of the system of equations for the arbitrary isotherm. Most 
authors have adopted an approach based on a representation of the sorption isotherm 
by a linear, rectangular or some other simple form. The variety of distribution func- 
tions c(l,t) and a(l,t) is defined by the quite complicated kinetic expressions or by the 
influence of different correlations in the mass-transfer stages. 

As in ideal chromatography, it can be assumed that the c(l,t) and a(l,t) func- 
tions in real chromatography are mainly influenced by sorption isotherms, whereas 
the sorption kinetics itself including longitudinal diffusion has a less important role. 
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The purpose of this study is to describe the possibilities of the layer of the equilibrium 
adsorption (LEA) mode16, which is based on real sorption isotherms and involves a 
simplified kinetic expression where only one effective constant, L,, denoting the layer 
of the equilibrium adsorption, is used. 

THEORETICAL 

The LEA model utilizes the main idea of plate theo$, in which the effective 
kinetic coefficient is characterized by the height equivalent to a theoretical plate 
(HETP). 

For each HETP, the distribution between two phases (sorption and concen- 
tration) is linear at any moment of time. For example, this aspect was particularly 
emphasized in ref. 7. 

Simultaneously with plate theory, the concept of the equilibrium achievement 
step was proposed. This concept**9 assumes that the equilibrium on the layer equiv- 
alent to a theoretical plate is achieved either during the discontinuous step of duration 
or during the corresponding push of the mobile phase. It was applied to the layer- 
by-layer method which extended plate theory to a description of real chromato- 
graphy l 0-i2. The chromatographic constants were taken as the experimental constants 
in the mass-balance equation. The physical meaning of the dimensionless chromato- 
graphic constants, defined as the ratio of the elementary volume of the mobile phase 
to the elementary volume of the stationary phase, was not determined. 

Thus the method was suitable for numerical solutions of chromatographic 
problems with non-linear isotherms, including the sorption of mixtures13. Neverthe- 
less, the introduction of the time scale greatly complicates the description of real 
chromatography and reduces the value of this approach. 

In the -LEA model the constants of the individual kinetic stages are expressed 
only in terms of a column length scale. By analogy with the height, H, equivalent to 
a theoretical plate, L, represents the sum of separate terms that express the constants 
of the elementary kinetic stages, i.e., the superposition principle of broadening factors 
is held to be valid for non-linear isotherms. For the equilibrium adsorption layer the 
exit concentration is numerically equal to the concentration, c(a), which is in equilib- 
rium with the mean value of the adsorption, 6, on the whole layer UC any moment of 
time. 

This definition can be explained by reference to Fig. 1. The distribution of the 
arbitrary substance in the stationary phase along the column (adsorption), curve 1, 
corresponds to its distribution in the mobile phase (curve 2) in the case of ideal 
chromatography. In the real process where broadening of chromatographic zones 
takes place, the real concentration (curve 3) will correspond to the real adsorption 
curve 1. For any sorption system it is always possible to evaluate the thickness of the 
layer, L,, for which the mean adsorption, a, will be in equilibrium with the concen- 
tration, c(G), leaving this layer. 

The value of L, is determined by all factors which broaden the chromatograph- 
ic zone and may be taken as an effective kinetio constant without serious error. Such 
a simplification permits one to combine in a simple first order differential equation 
the features of the mass balance, of the sorption kinetics and of the sorption isotherm. 
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Fig. 1. Diagram of the layer of the equilibrium adsorption. Curves: 1, adsorption; 2, concentration 
chromatography; 3, real concentration. 

The equation originally suggested6 may be written in the form 

in ideal 

where ti and C are the mean adsorption and concentration in the column volume of 
thickness L,, v is the superficial velocity of the mobile phase, cB is the concentration 
entering the layer L,; c(a) is the exit concentration and at the same time the analytical 
or numerical expression for a sorption isotherm and t is the time. Eqn. 1 is valid for 
any location of the equilibrium adsorption layer relative to the length of the chro- 
matographic column. It permits solutions of direct and inverse problems in real chro- 
matography and some applications will now be described. 

APPLICATIONS TO CHROMATOGRAPHIC PROBLEMS 

Both elution and frontal chromatography can be described by mass-exchange 
theory. However, the different evolution of the time and column-length distribution 
functions determined by the different initial conditions means that the solutions for 
the direct and inverse problems have their own characteristic properties. 

The assumption dE/dt 4 dti/dt makes the solution of eqn. 1 rather simple and 
is valid for all convex isotherms. It is also valid for linear isotherms having Henry 
constants of less than 50-100. Some deviations in the final results may indicate con- 
cave isotherms but in a region corresponding to very low concentrations, which them- 
selves do not determine the whole form of either the breakthrough or the elution 
curve. 

Usually breakthrough and elution curves are measured experimentally for var- 
ious column lengths. These experimental data also permit evaluation of the form of 
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the distribution functions along the column length. Therefore the examination of the 
common mass-exchange problem must be carried out relative to the concentration 
curves which are introduced in the model considered as the ~$5) and cB functions. 

The direct problem 
In the case of direct problems, for determination of either the elution curve or 

the breakthrough curve from a chromatographic column of length 1, n differential 
equations must be solved where n = I/Le. The solution for a linear isotherm in plate 
theory was analysed previously’ 4. 

For elution chromatography it can be assumed that the sample is introduced 
into the column by a short impulse. It is suggested here that the whole quantity of 
the introduced substance, q, is distributed in the first equilibrium adsorption layer, 
L,, situated at the column start under t = 0. Then, proceeding from eqn. 1, the 
solution of the direct problem reduces to an uncomplicated integration 

ii 

s dti V 
-= _-_.t 

@I L 

a0 

(2) 

where CT0 = q/L,S, and S denotes the cross-section of the chromatographic column. 
The solutions obtained in the form of elution curves from the column I = L, 

for concave, a = kc2, and convex, a = w - p log (C./C), sorption isotherms are 

v t 
c=c&_-.- 

L, 2k 

and 

&& 
c = pLe + 2.3c;t 

(4) 

where CA is the peak maximum corresponding to the quantity of introduced sub- 
stance, q, and k, w, p and c, are empirical coefficients. 

The expressions obtained for the elution curves from the function cB by use of 
equations of types 3 or 4 are extremely cumbersome for the second and subsequent 
layers. Therefore numerical methods are preferred for solution of the system of n 
equations in the case of long columns. This involves successive integration of eqn. 
1 by the finite difference method and is carried out to an order suggested in ref. 15. 

First we determine the amount of material sorbed on all the sequential equi- 
librium adsorption jayerS, dii = cBV . At/L., for the first given time step, At. In the 
case considered (elution chromatography), the decrease in the amount of material 
sorbed in the first layer, L,, is calculated at cB = 0 and for subsequent layers ca is 
determined by the concentration that is in equilibrium with the value of d for the 
previous layer using the given adsorption isotherms. The adsorption increment is 
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then estimated from eqn. 1 without taking account of dC/dt, and the total value of 
5 is calculated by a corresponding summation of Ati in each layer. Thus in the second 
and subsequent layers a successive accumulation of the sorbed material occurs. In 
the case of frontal chromatography, cB = co for the first equilibrium adsorption 
layer. 

The machine time required with modem computers is only a few seconds both 
for elution and frontal chromatography. The optimum interval for numerical inte- 
gration, At, is fixed by calculations with various At. This interval is chosen such that 
the computed distribution functions coincide with each other within a given accuracy. 
It should be stressed that the integration interval, At, in the LEA model is just the 
step in numerical integration. In the case of convex isotherms, At must not exceed 
30-60 s, whereas for linear isotherms, At < 0.5-l s. 

The results of the numerical calculations are presented in Figs. 2-5. A concave 
isotherm was expressed by the function a = W, where k = 1.41 . lo6 cm3/mg. A 
convex isotherm was expressed by the Dubinin-Radushkevich equation16 in the 
form: 

a = 2*5*exp[- O.l59(logy)‘] 

The superficial velocity of the mobile phase, v = 500 cm/min, and the thickness 
of the equilibrium adsorption layer, L, = 0.5 cm. The latter value and other con- 
ditions are taken from ref. 15. This order of magnitude L, is characteristic of the case 
of sorption on porous sorbents. It should be noted that for other conditions and 
constants the quality of the profiles of the curves shown in Figs. 2-5 is not changed. 

Q25 

0 20 40 time, min 

Fig. 2. Elution curves for a concave sorption isotherm (& = 100 mg/cms). Numbers on the curves denote 
the relative column length, l/Le. 



A. V. LARIN 86 

-f! 

-4 

80 40 60 hw, min 

Fig. 3. Elution curves for a convex sorption isotherm (a ,, = 100 mg/cm3). Details as in Fig. 2. 

Elution curves for a chromatographic column of length I = L, (Figs. 2 and 3) 
are characterized by an improvement in the maximum with the velocity of the mobile 
phase and then by a decreasing function. The elution band profile is gradually trans- 
formed upon increasing the column length. The peculiarities of elution chromato- 
graphy have been examined previously”. 

Experimental data for frontal chromatography (sorption dynamics) with non- 
linear isotherms are extensively reported in the literature.. The data from, systematic 
precision measurements18,1 9 of breakthrough curves on microporous sorbents over 
a broad range of concentration and column length are of particular importance. A 
comparison of data obtained from calculations according to the LEA model with the 

Fig. 4. Breakthrough curves for a CativexiSetherm. 
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Fig. 5. Breakthrough curves for a concave isotherm. 

experiment data reveals a good agreement and supports the assumptions made about 
the practical independence of the effective kinetic constant of the degree of filling 
(coverage) in different sorption systems and about the use of the superposition prin- 
ciple for the separate terms which express the constants of the elementary kinetic 
stages. 

Breakthrough curves for the convex isotherm (Fig. 4) agree closely with ex- 
perimental dataI and show the characteristic properties observed experimentally. A 
feature of the proposed LEA model is the absence of an instantaneous breakthrough 
stage in accordance with eqn. 1, where c(C) = 0 when t = 0. 

The breakthrough curves for the concave isotherm (Fig. 5) are characterized 
by the absence of a low-concentration region and have a “kinetic” shape, confirmed 
indirectly by the similar trend in the experimental data for the adsorption dynamics 
of water vapour on carbonaceous adsorbents. 

The inverse problem 
The solution of the inverse problem in the LEA model, when d?/dt 4 dtildt, 

is concluded by the integration: 

s da = a = + 
s 

[cg - c(C)] dt (5) 

e 

0 0 

The functions c(a) and cB simultaneously represent the breakthrough or elution 
curves obtained from chromatographic columns of various lengths II and l2 under 
the same conditions. 

A common method of solution of the inverse problem involves successive in- 
tegration according to eqn. 5 and the evaluation of the dependence of iii on c(Zi), i.e., 
the sorption isotherms for certain II and 12. The effective kinetic constant, L,, is equal 
to the difference (I, - 1*) when the calculated sorption isotherm more completely 
approximates the sorption isotherm or some of its fragments measured experimen- 
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tally. So in some cases the solution of the inverse problem is possible with the help 
of only one elution or breakthrough curve. 

In elution chromatography when the layer L, is situated at the beginning of 
a column the following expressions may be integrated: 

V 
a=(&-. 

L s c(G) dt 

0 

(6) 

(7) 

Fig. 6 illustrates the calculation according to eqn. 7. For each time ti corresponding 
to the concentration c(ai) the amount of sorption, tii, is determined. The integral in 
eqn. 7 is obtained graphically as the area S,. 

The time, t, is the independent variable and the concentration, c(Z), is the 
integrated function. It is obvious that the solution of the inverse problem in real 
chromatography when 1 = L, is quite opposite to the one in ideal chromatography, 
where the concentration is the independent variable and the integration function 
represents the appearance time of the sample or the mobile phase volume which 
passed before its appearance. 

The inverse problem in frontal chromatography is solved by the integration in 
eqn. 5. For a convex isotherm, the solution is based on one experimental break- 
through curve measured at the stage of parallel transport of the adsorption front, as 
previously reported20, and may be explained with the help of Fig. 7. The curve 2 is 
constructed relative to the experimental breakthrough curve 1 by transposing each 
concentration point by the same distance along the time axis. It determines the func- 

Fig. 6. Solution of the inverse problem in elution chromatography for 1 = Le. 
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0 #i time 

Fig. 7. Solution of the inverse problem in frontal chromatography (sorption dynamics) for convex iso- 
therms at the stage of parallel transport. 

tion cB for the LEA layer given by 

where I is the length of the layer at which the breakthrough curve was obtained and 
tl and t2 denote the times for equal exit concentrations according to the measured 
(1) and calculated (2) curves. 

The amounts of adsorption, tii, corresponding to the concentrations c(tii) are 
calculated from eqn. 5. The integral at the right-hand side of eqn. 5 is defined as the 
area Si, which is limited by curves 1 and 2 and the perpendicular to the time, ti, 
corresponding to the appearance of concentration c(iii). The values of ai are calcu- 
lated for the whole interval of measured concentrations. A solution of the inverse 
problem in sorption dynamics20 also shows the absence of a dependence of the ef- 
fective kinetic constant on the degree of tilling (coverage). 

CONCLUSIONS 

The model of the layer of the equilibrium adsorption, unlike other well known 
theoretical models, permits discrete solutions relative to the chromatographic column 
length. This results in considerable simplification of the initial system of equations 
and reduces it to one first order differential equation. It also appears possible to 
describe chromatographic processes on the basis of real sorption isotherms and the 
one effective kinetic constant. 

Numerical solutions of direct and inverse chromatographic problems accord- 
ing to the suggested model are straightforward. The LEA model may be used for 
description of the mass exchange in different aspects of real chromatography. 
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